Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2741: 239-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217657

RESUMO

Regulation of gene expression at the level of RNA and/or by regulatory RNA is an integral part of the regulatory circuits in all living cells. In bacteria, transcription and translation can be coupled, enabling regulation by transcriptional attenuation, a mechanism based on mutually exclusive structures in nascent mRNA. Transcriptional attenuation gives rise to small RNAs that are well suited to act in trans by either base pairing or ligand binding. Examples of 5'-UTR-derived sRNAs in the alpha-proteobacterium Sinorhizobium meliloti are the sRNA rnTrpL of the tryptophan attenuator and SAM-II riboswitch sRNAs. Analyses addressing RNA-based gene regulation often include measurements of steady-state levels and of half-lives of specific sRNAs and mRNAs. Using such measurements, recently we have shown that the tryptophan attenuator responds to translation inhibition by tetracycline and that SAM-II riboswitches stabilize RNA. Here we discuss our experience in using alternative RNA purification methods for analysis of sRNA and mRNA of S. meliloti. Additionally, we show that other translational inhibitors (besides tetracycline) also cause attenuation giving rise to the rnTrpL sRNA. Furthermore, we discuss the importance of considering RNA stability changes under different conditions and describe in detail a robust and fast method for mRNA half-life determination. The latter includes rifampicin treatment, RNA isolation using commercially available columns, and mRNA analysis by reverse transcription followed by quantitative PCR (RT-qPCR). The latter can be performed as a one-step procedure or in a strand-specific manner using the same commercial kit and a spike-in transcript as a reference.


Assuntos
Pequeno RNA não Traduzido , Sinorhizobium meliloti , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Triptofano/metabolismo , Meia-Vida , Pequeno RNA não Traduzido/metabolismo , Tetraciclinas/metabolismo , RNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Front Cell Infect Microbiol ; 13: 1166077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228670

RESUMO

Many Gram-negative pathogens utilize the type III secretion system (T3SS) to translocate virulence-promoting effector proteins into eukaryotic host cells. The activity of this system results in a severe reduction of bacterial growth and division, summarized as secretion-associated growth inhibition (SAGI). In Yersinia enterocolitica, the T3SS and related proteins are encoded on a virulence plasmid. We identified a ParDE-like toxin-antitoxin system on this virulence plasmid in genetic proximity to yopE, encoding a T3SS effector. Effectors are strongly upregulated upon activation of the T3SS, indicating a potential role of the ParDE system in the SAGI or maintenance of the virulence plasmid. Expression of the toxin ParE in trans resulted in reduced growth and elongated bacteria, highly reminiscent of the SAGI. Nevertheless, the activity of ParDE is not causal for the SAGI. T3SS activation did not influence ParDE activity; conversely, ParDE had no impact on T3SS assembly or activity itself. However, we found that ParDE ensures the presence of the T3SS across bacterial populations by reducing the loss of the virulence plasmid, especially under conditions relevant to infection. Despite this effect, a subset of bacteria lost the virulence plasmid and regained the ability to divide under secreting conditions, facilitating the possible emergence of T3SS-negative bacteria in late acute and persistent infections.


Assuntos
Sistemas Toxina-Antitoxina , Yersinia , Yersinia/genética , Virulência/genética , Sistemas Toxina-Antitoxina/genética , Sistemas de Secreção Tipo III/metabolismo , Plasmídeos/genética , Proteínas de Bactérias/metabolismo
3.
Microlife ; 4: uqad012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223733

RESUMO

The soil-dwelling plant symbiont Sinorhizobium meliloti is a major model organism of Alphaproteobacteria. Despite numerous detailed OMICS studies, information about small open reading frame (sORF)-encoded proteins (SEPs) is largely missing, because sORFs are poorly annotated and SEPs are hard to detect experimentally. However, given that SEPs can fulfill important functions, identification of translated sORFs is critical for analyzing their roles in bacterial physiology. Ribosome profiling (Ribo-seq) can detect translated sORFs with high sensitivity, but is not yet routinely applied to bacteria because it must be adapted for each species. Here, we established a Ribo-seq procedure for S. meliloti 2011 based on RNase I digestion and detected translation for 60% of the annotated coding sequences during growth in minimal medium. Using ORF prediction tools based on Ribo-seq data, subsequent filtering, and manual curation, the translation of 37 non-annotated sORFs with ≤ 70 amino acids was predicted with confidence. The Ribo-seq data were supplemented by mass spectrometry (MS) analyses from three sample preparation approaches and two integrated proteogenomic search database (iPtgxDB) types. Searches against standard and 20-fold smaller Ribo-seq data-informed custom iPtgxDBs confirmed 47 annotated SEPs and identified 11 additional novel SEPs. Epitope tagging and Western blot analysis confirmed the translation of 15 out of 20 SEPs selected from the translatome map. Overall, by combining MS and Ribo-seq approaches, the small proteome of S. meliloti was substantially expanded by 48 novel SEPs. Several of them are part of predicted operons and/or are conserved from Rhizobiaceae to Bacteria, suggesting important physiological functions.

4.
RNA Biol ; 19(1): 980-995, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950733

RESUMO

In Sinorhizobium meliloti, the methionine biosynthesis genes metA and metZ are preceded by S-adenosyl-L-methionine (SAM) riboswitches of the SAM-II class. Upon SAM binding, structural changes in the metZ riboswitch were predicted to cause transcriptional termination, generating the sRNA RZ. By contrast, the metA riboswitch was predicted to regulate translation from an AUG1 codon. However, downstream of the metA riboswitch, we found a putative Rho-independent terminator and an in-frame AUG2 codon, which may contribute to metA regulation. We validated the terminator between AUG1 and AUG2, which generates the sRNA RA1 that is processed to RA2. Under high SAM conditions, the activities of the metA and metZ promoters and the steady-state levels of the read-through metA and metZ mRNAs were decreased, while the levels of the RZ and RA2 sRNAs were increased. Under these conditions, the sRNAs and the mRNAs were stabilized. Reporter fusion experiments revealed that the Shine-Dalgarno (SD) sequence in the metA riboswitch is required for translation, which, however, starts 74 nucleotides downstream at AUG2, suggesting a novel translation initiation mechanism. Further, the reporter fusion data supported the following model of RNA-based regulation: Upon SAM binding by the riboswitch, the SD sequence is sequestered to downregulate metA translation, while the mRNA is stabilized. Thus, the SAM-II riboswitches fulfil incoherent, dual regulation, which probably serves to ensure basal metA and metZ mRNA levels under high SAM conditions. This probably helps to adapt to changing conditions and maintain SAM homoeostasis.


Assuntos
Pequeno RNA não Traduzido , Riboswitch , Conformação de Ácido Nucleico , S-Adenosilmetionina/metabolismo
5.
Wiley Interdiscip Rev RNA ; 13(3): e1696, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34651439

RESUMO

Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Assuntos
Pequeno RNA não Traduzido , Sinorhizobium meliloti , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Peptídeos/genética , Peptídeos/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Triptofano/genética , Triptofano/metabolismo
7.
Nucleic Acids Res ; 49(5): 2894-2915, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33619526

RESUMO

Trans-acting regulatory RNAs have the capacity to base pair with more mRNAs than generally detected under defined conditions, raising the possibility that sRNA target specificities vary depending on the specific metabolic or environmental conditions. In Sinorhizobium meliloti, the sRNA rnTrpL is derived from a tryptophan (Trp) transcription attenuator located upstream of the Trp biosynthesis gene trpE(G). The sRNA rnTrpL contains a small ORF, trpL, encoding the 14-aa leader peptide peTrpL. If Trp is available, efficient trpL translation causes transcription termination and liberation of rnTrpL, which subsequently acts to downregulate the trpDC operon, while peTrpL is known to have a Trp-independent role in posttranscriptional regulation of antibiotic resistance mechanisms. Here, we show that tetracycline (Tc) causes rnTrpL accumulation independently of Trp availability. In the presence of Tc, rnTrpL and peTrpL act collectively to destabilize rplUrpmA mRNA encoding ribosomal proteins L21 and L27. The three molecules, rnTrpL, peTrpL, and rplUrpmA mRNA, form an antibiotic-dependent ribonucleoprotein complex (ARNP). In vitro reconstitution of this ARNP in the presence of competing trpD and rplU transcripts revealed that peTrpL and Tc cause a shift of rnTrpL specificity towards rplU, suggesting that sRNA target prioritization may be readjusted in response to changing environmental conditions.


Assuntos
Antibacterianos/farmacologia , Peptídeos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Sinorhizobium meliloti/genética , Tetraciclina/farmacologia , Pareamento de Bases , Regulação Bacteriana da Expressão Gênica , Peptídeos/química , RNA Antissenso/metabolismo , RNA Mensageiro/química , Pequeno RNA não Traduzido/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sinorhizobium meliloti/efeitos dos fármacos
8.
RNA Biol ; 18(9): 1324-1338, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33164661

RESUMO

DnaA is the initiator protein of chromosome replication, but the regulation of its homoeostasis in enterobacteria is not well understood. The DnaA level remains stable at different growth rates, suggesting a link between metabolism and dnaA expression. In a bioinformatic prediction, which we made to unravel targets of the sRNA rnTrpL in Enterobacteriaceae, the dnaA mRNA was the most conserved target candidate. The sRNA rnTrpL is derived from the transcription attenuator of the tryptophan biosynthesis operon. In Escherichia coli, its level is higher in minimal than in rich medium due to derepressed transcription without external tryptophan supply. Overexpression and deletion of the rnTrpL gene decreased and increased, respectively, the levels of dnaA mRNA. The decrease of the dnaA mRNA level upon rnTrpL overproduction was dependent on hfq and rne. Base pairing between rnTrpL and dnaA mRNA in vivo was validated. In minimal medium, the oriC level was increased in the ΔtrpL mutant, in line with the expected DnaA overproduction and increased initiation of chromosome replication. In line with this, chromosomal rnTrpL mutation abolishing the interaction with dnaA increased both the dnaA mRNA and the oriC level. Moreover, upon addition of tryptophan to minimal medium cultures, the oriC level in the wild type was increased. Thus, rnTrpL is a base-pairing sRNA that posttranscriptionally regulates dnaA in E. coli. Furthermore, our data suggest that rnTrpL contributes to the DnaA homoeostasis in dependence on the nutrient availability, which is represented by the tryptophan level in the cell.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Óperon , Pequeno RNA não Traduzido/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/genética
9.
BMC Genomics ; 21(1): 797, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198623

RESUMO

BACKGROUND: The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3' to 5' direction phosphorolytically. In a reverse reaction, it can add A-rich tails to the 3'-end of RNA. The catalytic center of the exosome is in the aRrp41 subunit of its hexameric core. Its RNA-binding subunits aRrp4 and aDnaG confer poly(A) preference to the complex. The archaeal exosome was intensely characterized in vitro, but still little is known about its interaction with natural substrates in the cell, particularly because analysis of the transcriptome-wide interaction of an exoribonuclease with RNA is challenging. RESULTS: To determine binding sites of the exosome to RNA on a global scale, we performed individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) analysis with antibodies directed against aRrp4 and aRrp41 of the chrenarchaeon Sulfolobus solfataricus. A relatively high proportion (17-19%) of the obtained cDNA reads could not be mapped to the genome. Instead, they corresponded to adenine-rich RNA tails, which are post-transcriptionally synthesized by the exosome, and to circular RNAs (circRNAs). We identified novel circRNAs corresponding to 5' parts of two homologous, transposase-related mRNAs. To detect preferred substrates of the exosome, the iCLIP reads were compared to the transcript abundance using RNA-Seq data. Among the strongly enriched exosome substrates were RNAs antisense to tRNAs, overlapping 3'-UTRs and RNAs containing poly(A) stretches. The majority of the read counts and crosslink sites mapped in mRNAs. Furthermore, unexpected crosslink sites clustering at 5'-ends of RNAs was detected. CONCLUSIONS: In this study, RNA targets of an exoribonuclease were analyzed by iCLIP. The data documents the role of the archaeal exosome as an exoribonuclease and RNA-tailing enzyme interacting with all RNA classes, and underlines its role in mRNA turnover, which is important for adaptation of prokaryotic cells to changing environmental conditions. The clustering of crosslink sites near 5'-ends of genes suggests simultaneous binding of both RNA ends by the S. solfataricus exosome. This may serve to prevent translation of mRNAs dedicated to degradation in 3'-5' direction.


Assuntos
Proteínas Arqueais , Exossomos , Sulfolobus solfataricus , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/metabolismo , RNA/genética , Estabilidade de RNA , RNA Arqueal/genética , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
10.
J Microbiol ; 58(11): 945-956, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33125669

RESUMO

6S RNA, a conserved and abundant small non-coding RNA found in most bacteria, regulates gene expression by inhibiting RNA polymerase (RNAP) holoenzyme. 6S RNAs from α-proteobacteria have been studied poorly so far. Here, we present a first in-depth analysis of 6S RNAs from two α-proteobacteria species, Bradyrhizobium japonicum and Sinorhizobium meliloti. Although both belong to the order Rhizobiales and are typical nitrogen-fixing symbionts of legumes, their 6S RNA expression profiles were found to differ: B. japonicum 6S RNA accumulated in the stationary phase, thus being reminiscent of Escherichia coli 6S RNA, whereas S. meliloti 6S RNA level peaked at the transition to the stationary phase, similarly to Rhodobacter sphaeroides 6S RNA. We demonstrated in vitro that both RNAs have hallmarks of 6S RNAs: they bind to the σ70-type RNAP holoenzyme and serve as templates for de novo transcription of so-called product RNAs (pRNAs) ranging in length from ∼13 to 24 nucleotides, with further evidence of the synthesis of even longer pRNAs. Likewise, stably bound pRNAs were found to rearrange the 6S RNA structure to induce its dissociation from RNAP. Compared with B. japonicum 6S RNA, considerable conformational heterogeneity was observed for S. meliloti 6S RNA and its complexes with pRNAs, even though the two 6S RNAs share ∼75% sequence identity. Overall, our findings suggest that the two rhizobial 6S RNAs have diverged with respect to their regulatory impact on gene expression throughout the bacterial life cycle.


Assuntos
Bradyrhizobium/genética , RNA Bacteriano/genética , RNA não Traduzido/genética , Sinorhizobium meliloti/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade de RNA , Transcrição Gênica
11.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546623

RESUMO

Bacterial ribosome-dependent attenuators are widespread posttranscriptional regulators. They harbor small upstream open reading frames (uORFs) encoding leader peptides, for which no functions in trans are known yet. In the plant symbiont Sinorhizobium meliloti, the tryptophan biosynthesis gene trpE(G) is preceded by the uORF trpL and is regulated by transcription attenuation according to tryptophan availability. However, trpLE(G) transcription is initiated independently of the tryptophan level in S. meliloti, thereby ensuring a largely tryptophan-independent production of the leader peptide peTrpL. Here, we provide evidence for a tryptophan-independent role of peTrpL in trans We found that peTrpL increases the resistance toward tetracycline, erythromycin, chloramphenicol, and the flavonoid genistein, which are substrates of the major multidrug efflux pump SmeAB. Coimmunoprecipitation with a FLAG-peTrpL suggested smeR mRNA, which encodes the transcription repressor of smeABR, as a peptide target. Indeed, upon antibiotic exposure, smeR mRNA was destabilized and smeA stabilized in a peTrpL-dependent manner, showing that peTrpL acts in the differential regulation of smeABR Furthermore, smeR mRNA was coimmunoprecipitated with peTrpL in antibiotic-dependent ribonucleoprotein (ARNP) complexes, which, in addition, contained an antibiotic-induced antisense RNA complementary to smeRIn vitro ARNP reconstitution revealed that the above-mentioned antibiotics and genistein directly support complex formation. A specific region of the antisense RNA was identified as a seed region for ARNP assembly in vitro Altogether, our data show that peTrpL is involved in a mechanism for direct utilization of antimicrobial compounds in posttranscriptional regulation of multiresistance genes. Importantly, this role of peTrpL in resistance is conserved in other AlphaproteobacteriaIMPORTANCE Leader peptides encoded by transcription attenuators are widespread small proteins that are considered nonfunctional in trans We found that the leader peptide peTrpL of the soil-dwelling plant symbiont Sinorhizobium meliloti is required for differential, posttranscriptional regulation of a multidrug resistance operon upon antibiotic exposure. Multiresistance achieved by efflux of different antimicrobial compounds ensures survival and competitiveness in nature and is important from both evolutionary and medical points of view. We show that the leader peptide forms antibiotic- and flavonoid-dependent ribonucleoprotein complexes (ARNPs) for destabilization of smeR mRNA encoding the transcription repressor of the major multidrug resistance operon. The seed region for ARNP assembly was localized in an antisense RNA, whose transcription is induced by antimicrobial compounds. The discovery of ARNP complexes as new players in multiresistance regulation opens new perspectives in understanding bacterial physiology and evolution and potentially provides new targets for antibacterial control.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Sinais Direcionadores de Proteínas , Ribonucleoproteínas/genética , Sinorhizobium meliloti/genética , Triptofano/biossíntese , Antibacterianos/farmacologia , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
12.
Chembiochem ; 21(8): 1178-1187, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31705614

RESUMO

Proteins encoded by small open reading frames (sORFs) have a widespread occurrence in diverse microorganisms and can be of high functional importance. However, due to annotation biases and their technically challenging direct detection, these small proteins have been overlooked for a long time and were only recently rediscovered. The currently rapidly growing number of such proteins requires efficient methods to investigate their structure-function relationship. Herein, a method is presented for fast determination of the conformational properties of small proteins. Their small size makes them perfectly amenable for solution-state NMR spectroscopy. NMR spectroscopy can provide detailed information about their conformational states (folded, partially folded, and unstructured). In the context of the priority program on small proteins funded by the German research foundation (SPP2002), 27 small proteins from 9 different bacterial and archaeal organisms have been investigated. It is found that most of these small proteins are unstructured or partially folded. Bioinformatics tools predict that some of these unstructured proteins can potentially fold upon complex formation. A protocol for fast NMR spectroscopy structure elucidation is described for the small proteins that adopt a persistently folded structure by implementation of new NMR technologies, including automated resonance assignment and nonuniform sampling in combination with targeted acquisition.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Biologia Computacional/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína , Fases de Leitura Aberta , Conformação Proteica
13.
Methods Mol Biol ; 2062: 63-79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768972

RESUMO

The archaeal exosome is a protein complex with phosphorolytic activity. It is built of a catalytically active hexameric ring containing the archaeal Rrp41 and Rrp42 proteins, and a heteromeric RNA-binding platform. The platform contains a heterotrimer of the archaeal Rrp4 and Csl4 proteins (which harbor S1 and KH or Zn-ribbon RNA binding domains), and comprises additional archaea-specific subunits. The latter are represented by the archaeal DnaG protein, which harbors a novel RNA-binding domain and tightly interacts with the majority of the exosome isoforms, and Nop5, known as a part of an rRNA methylating complex and found to associate with the archaeal exosome at late stationary phase. Although in the cell the archaeal exosome exists in different isoforms with heterotrimeric Rrp4-Csl4-caps, in vitro it is possible to reconstitute complexes with defined, homotrimeric caps and to study the impact of each RNA-binding subunit on exoribonucleolytic degradation and on polynucleotidylation of RNA. Here we describe procedures for reconstitution of isoforms of the Sulfolobus solfataricus exosome and for set-up of RNA degradation and polyadenylation assays.


Assuntos
Proteínas Arqueais/metabolismo , Exossomos/metabolismo , Sulfolobus solfataricus/enzimologia , DNA Primase/metabolismo , Escherichia coli/metabolismo , Poliadenilação/fisiologia , RNA/metabolismo , Estabilidade de RNA/fisiologia , RNA Arqueal/metabolismo , Proteínas de Ligação a RNA/metabolismo
14.
Nucleic Acids Res ; 47(12): 6396-6410, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-30993322

RESUMO

Ribosome-mediated transcription attenuation is a basic posttranscriptional regulation mechanism in bacteria. Liberated attenuator RNAs arising in this process are generally considered nonfunctional. In Sinorhizobium meliloti, the tryptophan (Trp) biosynthesis genes are organized into three operons, trpE(G), ppiD-trpDC-moaC-moeA, and trpFBA-accD-folC, of which only the first one, trpE(G), contains a short ORF (trpL) in the 5'-UTR and is regulated by transcription attenuation. Under conditions of Trp sufficiency, transcription is terminated between trpL and trpE(G), and a small attenuator RNA, rnTrpL, is produced. Here, we show that rnTrpL base-pairs with trpD and destabilizes the polycistronic trpDC mRNA, indicating rnTrpL-mediated downregulation of the trpDC operon in trans. Although all three trp operons are regulated in response to Trp availability, only in the two operons trpE(G) and trpDC the Trp-mediated regulation is controlled by rnTrpL. Together, our data show that the trp attenuator coordinates trpE(G) and trpDC expression posttranscriptionally by two fundamentally different mechanisms: ribosome-mediated transcription attenuation in cis and base-pairing in trans. Also, we present evidence that rnTrpL-mediated regulation of trpDC genes expression in trans is conserved in Agrobacterium and Bradyrhizobium, suggesting that the small attenuator RNAs may have additional conserved functions in the control of bacterial gene expression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/metabolismo , Sinorhizobium meliloti/genética , Triptofano/biossíntese , Pareamento de Bases , Óperon , Estabilidade de RNA , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Sinorhizobium meliloti/metabolismo , Transcrição Gênica
15.
FEBS Lett ; 591(24): 4039-4048, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29159940

RESUMO

The archaeal exosome, a protein complex responsible for phosphorolytic degradation and tailing of RNA, has an RNA-binding platform containing Rrp4, Csl4, and DnaG. Aiming to detect novel interaction partners of the exosome, we copurified Nop5, which is a part of an rRNA methylating ribonucleoprotein complex, with the exosome of Sulfolobus solfataricus grown to a late stationary phase. We demonstrated the capability of Nop5 to bind to the exosome with a homotrimeric Rrp4-cap and to increase the proportion of polyadenylated RNAin vitro, suggesting that Nop5 is a dual-function protein. Since tailing of RNA probably serves to enhance RNA degradation, association of Nop5 with the archaeal exosome in the stationary phase may enhance tailing and degradation of RNA as survival strategy.


Assuntos
Proteínas Arqueais/metabolismo , Exossomos/metabolismo , RNA Arqueal/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Poliadenilação , Ligação Proteica , Estabilidade de RNA , Especificidade por Substrato , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
16.
Nucleic Acids Res ; 45(13): 7938-7949, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28520934

RESUMO

The conserved Sm and Sm-like proteins are involved in different aspects of RNA metabolism. Here, we explored the interactome of SmAP1 and SmAP2 of the crenarchaeon Sulfolobus solfataricus (Sso) to shed light on their physiological function(s). Both, SmAP1 and SmAP2 co-purified with several proteins involved in RNA-processing/modification, translation and protein turnover as well as with components of the exosome involved in 3΄ to 5΄ degradation of RNA. In follow-up studies a direct interaction with the poly(A) binding and accessory exosomal subunit DnaG was demonstrated. Moreover, elevated levels of both SmAPs resulted in increased abundance of the soluble exosome fraction, suggesting that they affect the subcellular localization of the exosome in the cell. The increased solubility of the exosome was accompanied by augmented levels of RNAs with A-rich tails that were further characterized using RNASeq. Hence, the observation that the Sso SmAPs impact on the activity of the exosome revealed a hitherto unrecognized function of SmAPs in archaea.


Assuntos
Proteínas Arqueais/metabolismo , RNA Arqueal/metabolismo , Sulfolobus solfataricus/metabolismo , Sequência Rica em At , Proteínas Arqueais/genética , DNA Primase/genética , DNA Primase/metabolismo , Exossomos/genética , Exossomos/metabolismo , Estabilidade de RNA , RNA Arqueal/química , RNA Arqueal/genética , Solubilidade , Sulfolobus solfataricus/genética
17.
Microbiology (Reading) ; 163(4): 570-583, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28141492

RESUMO

The ribonucleases (RNases) E and J play major roles in E. coli and Bacillus subtilis, respectively, and co-exist in Sinorhizobium meliloti. We analysed S. meliloti 2011 mutants with mini-Tn5 insertions in the corresponding genes rne and rnj and found many overlapping effects. We observed similar changes in mRNA levels, including lower mRNA levels of the motility and chemotaxis related genes flaA, flgB and cheR and higher levels of ndvA (important for glucan export). The acyl-homoserine lactone (AHL) levels were also higher during exponential growth in both RNase mutants, despite no increase in the expression of the sinI AHL synthase gene. Furthermore, several RNAs from both mutants migrated aberrantly in denaturing gels at 300 V but not under stronger denaturing conditions at 1300 V. The similarities between the two mutants could be explained by increased levels of the key methyl donor S-adenosylmethionine (SAM), since this may result in faster AHL synthesis leading to higher AHL accumulation as well as in uncontrolled methylation of macromolecules including RNA, which may strengthen RNA secondary structures. Indeed, we found that in both mutants the N6-methyladenosine content was increased almost threefold and the SAM level was increased at least sevenfold. Complementation by induced ectopic expression of the respective RNase restored the AHL and SAM levels in each of the mutants. In summary, our data show that both RNase E and RNase J are needed for SAM homeostasis in S. meliloti.


Assuntos
Proteínas de Bactérias/genética , Endorribonucleases/genética , Regulação Bacteriana da Expressão Gênica , Metiltransferases/genética , S-Adenosilmetionina/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Flagelina/genética , Metilação , Percepção de Quorum , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
RNA Biol ; 14(10): 1353-1363, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27834614

RESUMO

Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3'-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level.


Assuntos
Bradyrhizobium/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Sequência de Bases , Bradyrhizobium/metabolismo , Clonagem Molecular , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
19.
PLoS One ; 11(10): e0165429, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27788207

RESUMO

Small open reading frames (sORFs) and genes for non-coding RNAs are poorly investigated components of most genomes. Our analysis of 1391 ORFs recently annotated in the soybean symbiont Bradyrhizobium japonicum USDA 110 revealed that 78% of them contain less than 80 codons. Twenty-one of these sORFs are conserved in or outside Alphaproteobacteria and most of them are similar to genes found in transposable elements, in line with their broad distribution. Stabilizing selection was demonstrated for sORFs with proteomic evidence and bll1319_ISGA which is conserved at the nucleotide level in 16 alphaproteobacterial species, 79 species from other taxa and 49 other Proteobacteria. Further we used Northern blot hybridization to validate ten small RNAs (BjsR1 to BjsR10) belonging to new RNA families. We found that BjsR1 and BjsR3 have homologs outside the genus Bradyrhizobium, and BjsR5, BjsR6, BjsR7, and BjsR10 have up to four imperfect copies in Bradyrhizobium genomes. BjsR8, BjsR9, and BjsR10 are present exclusively in nodules, while the other sRNAs are also expressed in liquid cultures. We also found that the level of BjsR4 decreases after exposure to tellurite and iron, and this down-regulation contributes to survival under high iron conditions. Analysis of additional small RNAs overlapping with 3'-UTRs revealed two new repetitive elements named Br-REP1 and Br-REP2. These REP elements may play roles in the genomic plasticity and gene regulation and could be useful for strain identification by PCR-fingerprinting. Furthermore, we studied two potential toxin genes in the symbiotic island and confirmed toxicity of the yhaV homolog bll1687 but not of the newly annotated higB homolog blr0229_ISGA in E. coli. Finally, we revealed transcription interference resulting in an antisense RNA complementary to blr1853, a gene induced in symbiosis. The presented results expand our knowledge on sORFs, non-coding RNAs and repetitive elements in B. japonicum and related bacteria.


Assuntos
Bradyrhizobium/genética , Fases de Leitura Aberta/genética , RNA Bacteriano/genética , RNA não Traduzido/genética , Sequências Repetitivas de Ácido Nucleico/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/fisiologia , Sequência Conservada , Regulação para Baixo/efeitos dos fármacos , Ferro/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Toxinas Biológicas/genética
20.
BMC Genomics ; 17: 302, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27107716

RESUMO

BACKGROUND: Differential RNA-sequencing (dRNA-seq) is indispensable for determination of primary transcriptomes. However, using dRNA-seq data to map transcriptional start sites (TSSs) and promoters genome-wide is a bioinformatics challenge. We performed dRNA-seq of Bradyrhizobium japonicum USDA 110, the nitrogen-fixing symbiont of soybean, and developed algorithms to map TSSs and promoters. RESULTS: A specialized machine learning procedure for TSS recognition allowed us to map 15,923 TSSs: 14,360 in free-living bacteria, 4329 in symbiosis with soybean and 2766 in both conditions. Further, we provide proteomic evidence for 4090 proteins, among them 107 proteins corresponding to new genes and 178 proteins with N-termini different from the existing annotation (72 and 109 of them with TSS support, respectively). Guided by proteomics evidence, previously identified TSSs and TSSs experimentally validated here, we assign a score threshold to flag 14 % of the mapped TSSs as a class of lower confidence. However, this class of lower confidence contains valid TSSs of low-abundant transcripts. Moreover, we developed a de novo algorithm to identify promoter motifs upstream of mapped TSSs, which is publicly available, and found motifs mainly used in symbiosis (similar to RpoN-dependent promoters) or under both conditions (similar to RpoD-dependent promoters). Mapped TSSs and putative promoters, proteomic evidence and updated gene annotation were combined into an annotation file. CONCLUSIONS: The genome-wide TSS and promoter maps along with the extended genome annotation of B. japonicum represent a valuable resource for future systems biology studies and for detailed analyses of individual non-coding transcripts and ORFs. Our data will also provide new insights into bacterial gene regulation during the agriculturally important symbiosis between rhizobia and legumes.


Assuntos
Bradyrhizobium/genética , Mapeamento Cromossômico/métodos , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Algoritmos , Biologia Computacional , Aprendizado de Máquina , Proteoma , RNA Bacteriano/genética , Análise de Sequência de RNA , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...